
Midterm Exam Solutions

Problem 1

Let X ∼ Expo(λ).

(a)

The expectation and variance of X are:

E[X] =

∫ ∞

0

xλe−λx dx =
1

λ
,

E[X2] =

∫ ∞

0

x2λe−λx dx =
2

λ2
,

Var[X] = E[X2]− (E[X])2 =
2

λ2
− 1

λ2
=

1

λ2
.

(b)

The moment generating function MX(t) is:

MX(t) = E[etX ] =

∫ ∞

0

etxλe−λx dx =
λ

λ− t
, for t < λ.

(c)

The derivatives of MX(t) at t = 0 are:

d

dt
MX(t)

∣∣∣∣
t=0

=
λ

(λ− t)2

∣∣∣∣
t=0

=
1

λ
= E[X],

d2

dt2
MX(t)

∣∣∣∣
t=0

=
2λ

(λ− t)3

∣∣∣∣
t=0

=
2

λ2
= E[X2].

Problem 2

Let X,Y be two continuous random variables with joint density ρX,Y (x, y) given
by

ρX,Y (x, y) =
12

y
e−3xy4

for x > 0, y > 1,

and 0 otherwise. The marginal density functions are denoted by ρX(x) and
ρY (y).
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(a)

The marginal probability density function ρY (y) is:

ρY (y) =

∫ ∞

0

ρX,Y (x, y) dx =

∫ ∞

0

12

y
e−3xy4

dx.

Let u = 3xy4, then du = 3y4dx and dx = du
3y4 . Substituting, we get:

ρY (y) =
12

y

∫ ∞

0

e−u · du

3y4
=

12

y
· 1

3y4

∫ ∞

0

e−u du =
4

y5
.

Thus,

ρY (y) =
4

y5
, for y > 1.

(b)

The conditional expectation E[X | Y = 1] is:

E[X | Y = 1] =

∫ ∞

0

x · ρX|Y (x | 1) dx.

First, compute the conditional density ρX|Y (x | 1):

ρX|Y (x | 1) = ρX,Y (x, 1)

ρY (1)
=

12
1 e−3x·14

4
15

= 3e−3x.

Thus,

E[X | Y = 1] =

∫ ∞

0

x · 3e−3x dx =
1

3
.

(c)

The conditional expectation E[X2 | Y = y] is:

E[X2 | Y = y] =

∫ ∞

0

x2 · ρX|Y (x | y) dx.

First, compute the conditional density ρX|Y (x | y):

ρX|Y (x | y) = ρX,Y (x, y)

ρY (y)
=

12
y e−3xy4

4
y5

= 3y4e−3xy4

.

Thus,

E[X2 | Y = y] =

∫ ∞

0

x2 · 3y4e−3xy4

dx.

Let u = 3xy4, then du = 3y4dx and dx = du
3y4 . Substituting, we get:

E[X2 | Y = y] =

∫ ∞

0

(
u

3y4

)2

· 3y4e−u · du

3y4
=

1

9y8

∫ ∞

0

u2e−u du =
2

9y8
.
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Problem 3

Let X0 = 3, Xn =
∑n

k=1 ξk, where {ξk}k≥1 is a sequence of independent and
identically distributed random variables such that P (ξk = 1) = 2

3 and P (ξk =
−1) = 1

3 . Define
τ = min{n > 0 : Xn = 0 or Xn = 6}.

(a)

The process
(
1
2

)Xn
is a martingale because:

E

[(
1

2

)Xn+1

| Fn

]
=

(
1

2

)Xn

·
(
2

3
· 1
2
+

1

3
· 2
)

=

(
1

2

)Xn

.

(b)

Take B = [6,∞) ∪ (−∞, 0] in Lemma 2.15 of the lecture notes..

(c)

We need to prove that P[τ < +∞] = 1 and deduce that P[Xτ ∈ {0, 6}] = 1.
Define the event Ak as the event that the sequence {ξk+1, ξk+2, . . . , ξk+5}

consists of all +1 or all −1. That is:

Ak = {ξk+1 = ξk+2 = · · · = ξk+5 = +1} ∪ {ξk+1 = ξk+2 = · · · = ξk+5 = −1}.

Since ξk are i.i.d. with P (ξk = 1) = 2
3 and P (ξk = −1) = 1

3 , we have:

P (Ak) =

(
2

3

)5

+

(
1

3

)5

=
32

243
+

1

243
=

33

243
=

11

81
.

If any Ak occurs, then within the next 5 steps, Xn will either increase or
decrease by 5. Since X0 = 3, if Xn increases by 5, it will reach at least 6; if
it decreases by 5, it will reach at most 0. Therefore, if any Ak occurs, then
τ ≤ k + 5.

P[τ > 5n] equals to the Probability that Ak not occurs for k ∈ (0,5n) is
smaller than (1− P (Ak))

n, which tends to 0 as n tends to infinity.
Thus we conclude that P[τ < +∞] = 1
Since τ < +∞ almost surely, and Xn reaches either 0 or 6 at time τ , we

have:
P[Xτ ∈ {0, 6}] = 1.

(d)

Using the optional stopping theorem:

E

[(
1

2

)Xτ
]
=

(
1

2

)0

· P[Xτ = 0] +

(
1

2

)6

· P[Xτ = 6].
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Since
(
1
2

)Xn
is a martingale, we have:

E

[(
1

2

)Xτ
]
=

(
1

2

)X0

=

(
1

2

)3

=
1

8
.

Let p = P[Xτ = 6], then:

1

8
= 1 · (1− p) +

1

64
· p.

Solving for p, we get:

1

8
= 1− p+

p

64
, ⇒ 1

8
= 1− 63p

64
.

Thus,

p =
64

63
·
(
1− 1

8

)
=

64

63
· 7
8
=

8

9
.

Therefore,

P[Xτ = 6] =
8

9
.

(e)

The process Xn − 1
3n is a martingale because:

E

[
Xn+1 −

1

3
(n+ 1) | Fn

]
= Xn + E[ξn+1]−

1

3
(n+ 1) = Xn − 1

3
n.

(f)

Using the optional stopping theorem:

E[Xτ − 1

3
τ ] = E[X0] = 3.

Since Xτ ∈ {0, 6}, we have:

E[Xτ ] = 0 · P[Xτ = 0] + 6 · P[Xτ = 6] = 6 · 8
9
=

16

3
.

Thus,

E[τ ] = 3 (E[Xτ ]− 3) = 3

(
16

3
− 3

)
= 3 · 7

3
= 7.

Problem 4

See Question 1 in Homework 5.
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